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SUMMARY

In this work, we describe a meshless numerical method based on local collocation with RBFs for the
solution of the poroelasticity equation. The RBF finite collocation approach forms a series of overlapping
nodal stencils, over which an RBF collocation is performed. These local collocation systems enforce the
governing PDE operator throughout their interior, with the intersystem communication occurring via the
collocation of field variables at the stencil periphery. The method does not rely on a generalised finite dif-
ferencing approach, whereby the governing partial differential operator is reconstructed at the global level
to drive the solution of the PDE. Instead, the PDE governing and boundary operators are enforced directly
within the local RBF collocation systems, and the sparse global assembly is formed by reconstructing the
value of the field variables at the centrepoint of the local stencils. In this way, the solution of the PDE is
driven entirely by the local RBF collocation, and the method more closely resembles the approach of the
full-domain RBF collocation method. By formulating the problem in this fashion, high rates of convergence
may be attained without the computational cost and numerical ill-conditioning issues that are associated
with the full-domain RBF collocation approach.

An analytical solution is formulated for a 2D poroelastic fluid injection scenario and is used to verify the
proposed implementation of the method. Highly accurate solutions are produced, and convergence rates in
excess of sixth order are observed for each field variable (i.e. pressure and displacement) and field-variable
derivative (i.e. pressure gradients and stresses). The stress and displacement fields resulting from the solu-
tion of the poroelasticity equation are then used to describe the formation and propagation of microfractures
and microfissures, which may form in the presence of large shear strain, in terms of a continuous damage
variable which modifies the mechanical and hydraulic properties of the porous medium. The formation of
such hydromechanical damage, and the resulting increase in hydraulic conductivity, is investigated for a
pressurised injection into sandstone. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION AND MOTIVATION

RBF collocation methods for the solution of PDEs, originally described by Kansa [1,2], are attractive
because of their meshless formulation, relative ease of implementation, high convergence rates and
flexibility with regard to the enforcement of arbitrary boundary operators. However, the use of glob-
ally supported basis functions leads to fully populated collocation matrices, which become increasingly
ill-conditioned and computationally expensive with increasing dataset size. These limitations have in
recent years motivated researchers to investigate various methods for restricting the domain of support
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for the basis functions, thereby mitigating the computational cost and numerical conditioning issues
while maintaining the performance and flexibility of the full-domain formulation.

RBF localisations typically fall into two categories: methods based on compactly supported basis
functions and methods using connected networks of local collocation systems. The concept of com-
pactly supported basis functions was introduced by Wu [3] and extended by Wendland [4, 5]. The
compact support principle uses RBFs that are truncated so as to be nonzero only within a local
radius, resulting in a collocation system that is only sparsely populated. Although compact-support
RBF collocation is an excellent approach for the interpolation of scattered data, it is less well suited
to the solution of PDEs, requiring the radius of support to be maintained as the dataset density
increases in order to maintain convergence rates [6]. In this way, the bandwidth of the collocation
matrix increases with the dataset density. The alternative approach of defining networks of small, con-
nected RBF collocation systems has been in use since 2001 [7]. Although this approach is somewhat
more complex than the compact support RBF approach, it allows for much greater flexibility in the
specific method of implementation and has led to many interesting adaptations across a wide range
of problems.

One such local RBF approach, which is popular in the literature, is the generalised finite difference
(FD) approach (RBF-FD); see, for example, [8—12]. In this approach, the RBF interpolants take the
place of polynomials in the traditional FD method, with the governing and boundary partial differen-
tial operators reconstructed from the interpolating RBFs in order to form a sparse global system. By
replacing the polynomials with RBFs, the method is able to operate on irregular datasets; however,
many desirable features of the full-domain RBF approach may be lost in this formulation. We propose
instead to use an RBF localisation that is more closely related to the full-domain approach. Rather than
reconstructing an approximation of the governing PDE at the global assembly level, as is the case in
both traditional and RBF-based finite differencing approaches, the RBF ‘finite collocation’ (RBF-FC)
approach enforces the governing and boundary PDE operators directly within the local RBF colloca-
tion systems and assembles only the values of the field variables into the sparse global assembly. In
this way, the RBF-FC approach does not rely on a generalised finite differencing procedure; instead,
the solution of the PDE is driven entirely via collocation of the relevant operators within the local
RBF systems.

In the proposed RBF-FC approach, the computational domain is discretised by a quasi-scattered
distribution of nodes, with each internal node connected to its neighbours in some suitable fashion
to form a series of local stencils. Over each stencil, an RBF collocation is performed. At the stencil
interior, the linearised PDE is enforced within the RBF collocation, and at the stencil boundaries, the
unknown value of the solution field is collocated via a Dirichlet operator. The unknown values of the
solution field are then reconstructed at each interior node, in terms of the unknown values of the field
variable at surrounding nodes. These nodal values are then assembled into a sparse global system,
which may be solved to obtain the solution field over the entire solution domain. The stencils therefore
communicate only via their respective boundaries, and in this way, the structure of the local collocation
systems closely resembles the global RBF collocation approach. The localisation of the method, how-
ever, significantly mitigates the computational cost and numerical conditioning issues that are typically
associated with full-domain RBF methods on large datasets.

This RBF-FC principle was originally described in [13] for the solution of convection-diffusion
and linear elasticity problems. The inclusion of the PDE governing and boundary operators within the
collocation systems allows for many beneficial features, and for improved solution accuracy, in com-
parison with approaches that use unmodified RBFs as interpolants. For example, the problem of a thin
plate with a circular hole under uniform axial traction is solved in [14] using a cell-based smoothed
RBF approach, which uses ‘native’ RBF interpolants. A variety of RBF stencil configurations are
investigated, resulting in convergence rates of between 1.73 and 2.43 for displacement, and between
0.87 and 1.19 for stresses on this problem. The same problem is also solved in [13] using the RBF-FC
approach, demonstrating convergence rates above 6.5 in displacement and in all stress components.
The improved convergence rates, and the ability to reconstruct partial derivatives at the same accuracy
as the solution field itself, are properties that arise from the inclusion of the PDE governing and bound-
ary operators into the local collocation systems. In the present work, the RBF-FC method is formulated
for the solution of the linear poroelasticity equation and for the nonlinear growth of hydromechanical
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damage. The formulation of the RBF-FC approach for steady poroelastic analysis is described fully in
Section 4.

Hydromechanical processes generally play an important role in geological media. These forma-
tions are usually fluid-saturated fractured rock masses. Therefore, they can deform either as a result
of changes in external loads or internal pore pressures. The use of coupled hydromechanical models
allow determination of the conditions under which mechanical failure (shear failure or hydraulic frac-
ture) can occur. In the case of CO2 injection into deep saline aquifers, such analysis allows constraints
to be placed on injection pressures such that damage to critical parts of the surrounding geology can
be limited to below an acceptable fracturing threshold.

In poroelasticity, the governing equation describing rock deformation is defined by a nonhomoge-
neous Navier equation for linear elasticity, with the nonhomogeneous term proportional to the gradient
of the fluid pressure. Similarly, the stress tensor constitutive equation is given by the linear elastic stress
tensor minus the fluid pressure. The fluid mass balance equation occupying the void space must also
take into to account the motion due to the solid deformation, resulting in a set of coupled PDE:s.

An elegant description of the damage processes in porous rock due to the injection of over
pressurised fluid is given in [15], from which we take some relevant remarks. The classical theory
of poroelasticity, which is based on linear elastic behaviour, can have a significant limitation in the
application to geomaterials, which could exhibit irreversible and nonlinear phenomena in the behaviour
of the soil skeleton. These nonlinear phenomena in most natural brittle geomaterials can range from
the generation of microcracks (i.e. damage) to the development of macrocracks (i.e. fractures). The
generation of these flaws in solid matrices can alter the deformability and permeability characteris-
tics of the saturated geomaterials. The description of the dominant mode of the flaw should include
the following: the state of stress, rate of loading, microstructure of the geomaterial, presence of stress
singularities (e.g. sharp contacts) and the ability of a flaw to open and close. The notion of contin-
uum damage can be more relevant to semibrittle geomaterials such as soft rocks, over consolidated
sandstone and other porous geological media where softening due to generation of microvoids or
microcracks exist.

The development of microcracks and microvoids alters the elastic stiffness of the porous skeleton.
A concurrent effect of such damage processes is the change of the permeability of the porous medium
(which increases), resulting in an easy migration of the fluid within the saturated material. The gradual
degradation in the elastic stiffness and the change to hydraulic conductivity is a result of either contin-
uing growth of existing microdefects or the progressive nucleation of new microdefects. For a given
state of stress, the extent of damage is an intrinsic property of the material, which is defined by the
damage evolution process.

In contrast to discrete fractures, the micromechanical damage of porous skeleton does not result in
any discontinuity in displacement, traction and fluid pressure fields within the porous medium. Also,
the damage effects are governed by the global state of stresses in the porous medium, and consequently,
the process can be analysed by including the concept of continuum damage mechanics [16] into the
classical theory of poroelasticity. This is achieved by representing the stiffness properties and perme-
ability characteristics of a porous medium as a function of the state of damage in the material. The
continuum damage model examines the development of microcracks, or any other microdefects, prior
to the development of macrocracks (i.e. fractures). The process of damage is expected to be highly
anisotropic in nature and could be restricted to localised zones.

The theory of continuum damage mechanics has been widely used to predict the nonlinear response
of a variety of materials, including metals, concrete, composites and geological materials (see [17-21]
among others). The nonlinear behaviour of materials is considered by introducing local damage
variables in the analysis. The damage variables represent the average material degradation at the
macroscale that are normally associated with the classical continuum description. In this way, the
damage concept can be easily incorporated into the theory of poroelasticity.

The development of damage, including initiation and coalescence of microcracks, gives rise to
nonlinear phenomena in the constitutive behaviour of fluid saturated geomaterials. The effect of
damage on either the degradation of elastic moduli or strength (in the form of strain softening) of
geomaterials such as rocks has been observed by [22] and [23]. The effect of microcrack generation on
the permeability of saturated geomaterials has also been observed by [24,25] and [26]. More recently,
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the theory of the continuous damage of fracture mechanics has been applied by [27] to solve problems
related to hydraulic fracturing in heterogeneous geomaterials.

The present work is ultimately motivated by the risk analysis of possible leakage during CO, injec-
tion into deep saline aquifers, due to the localised rise in pressure produced by the injection of fluid.
Even when a total failure of the rock does not occur, the presence of material damage will result in
larger values of the effective rock permeability, with an associated increase in the rate of leakage for a
given imposed pressure gradient. The increase in rock permeability can be as critical as a total failure
of the cap rock, due to the corresponding increase of leakage. Although we are ultimately motivated
by the problem of cap rock integrity during CO, sequestration into deep saline aquifers, in this work,
we do not attempt to fully solve this type of problem. Instead, we present a novel and robust numerical
technique that can be used in the analysis of such complex problems and demonstrate its application
with relatively simple 2D numerical examples that describe the local evolution of damage during an
injection scenario.

2. LINEAR POROELASTICITY

The theory of poroelasticity was essentially developed by Maurice A. Biot. In [28], he couples Navier’s
linear elasticity equations with Darcy’s law for the flow through a porous medium. For an isotropic
material and incompressible fluid, the equations modelling the displacement u; of the material and the
pressure p of the fluid can be written as

9 9 9
(k,,( )%) % L nSe Xk (1)
J

where the average seepage velocity, v;, is described by the Darcy law in terms of the gradient of
the pressure field p with hydraulic conductivity k;;(x). In the aforementioned equation, p is the fluid
density, g the gravitational acceleration, 1 the porosity, S, the fluid compressibility coefficient, ¢ the

dilatational strain g for a displacement u; in the porous medium and x; the vertical coordinate taken

positive upwards.
The poroelastic stress tensor is given by

Ojj = Agkk&j + 2M8ij — oszij 2)

where « € [0, 1] is the Biot coefficient, g;; is the infinitesimal strain tensor

= 2 8)6_1' 8)6,'

and A, pu are the Lame constants which, for a plane-strain assumption, are related to the Young’s
modulus (E£) and the Poisson ration (v) as
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The stress field satisfies the Navier momentum equation
9o
Y _y (5)
8Xj
Writing the stress tensor in terms of the effective stress as
GU:6U_ap8U (6)
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and substituting into equation (5), the following nonhomogeneous equation is found:

96 ad
90y _ 0 @

0x 0x;

where the pressure field and its gradient are computed from the solution of the Darcy flow equa-
tion (1) and are coupled with the elasticity equation. In this way, a system of coupled PDEs, (1) and
(7), determine the displacement u; of the material and the fluid pressure p, via two-way coupling.
Under the steady-state conditions considered in the present work, equation (1) uncouples from the
solid displacement and becomes a Poisson equation for the pressure field, that is, one way-coupling.

In order to model the evolution of large-scale macroscopic cracks or fractures, as defined by dis-
continuities in the problem domain and described in terms of the stress intensity factor at the crack tip
singularity, the two-way coupling of the transient poroelasticity is essential. In this case, as the crack
grows, the problem domain is continually changing in shape, with corresponding changes in the flow
pattern, and therefore, it is not possible to predict the final state of the crack evolution without consid-
ering the full transient problem. However, in this work, we are interested in the steady state evolution
of microcracks, which are defined by a continuous material damage formulation (see in the succeeding
text). As described in the literature (e.g. [29]), this evolution may be defined in terms of a continu-
ous nonlinear-elastic medium governed by a steady nonlinear Navier equation, which is a function
of the damage parameter. The global evolution of the material damage occurs because of the forma-
tion of multiple microcracks and microfissures, which weaken the porous medium, and the concurrent
changes in permeability are considered without looking at the detail of how the cracks themselves are
propagated on the microscale. The steady-state poroelastic equation is therefore used in the present
work, with the corresponding one-way coupling between the Darcy equation and elasticity.

3. MATERIAL DAMAGE DUE TO THE EVOLUTION OF MICROCRACKS UNDER
PRESSURISED FLOW CONDITIONS

The injection of a pressurised fluid into the rock can lead to the development micro fractures and/or
force existing macro or microcracks to further open. The propagation these fractures within a rock
layer will result in an increase of the rock permeability, allowing faster migration of the flow through
the rock formation. Even when a total failure of the rock does not occur, an increase in the length of
cracks results in larger values of the effective rock permeability, with an associated increase in the rate
of leakage for a given imposed pressure gradient.

Damage processes result in the development of surface discontinuities in the form of microcracks
and/or volume discontinuities as microvoids, which are generally both present. At the scale of micro-
cracks, the damage phenomenon results in a discontinuous medium. On the macroscale, however,
damage can be modelled via variables applicable to a continuum region [16]. In contrast to continuum
damage phenomena, the fracture process is localised at the crack tip and gives rise to discontinuous
fields for the displacement, traction and pore pressure variables.

We now suppose that the material is susceptible to stress-induced isotropic damage, which leads to
an irreversible alteration in its poroelastic properties. In the isotropic damage model applied in [29], a
scalar damage variable D is considered, such that 0 < D < D, < 1. When D = 0, the material has
not been affected by damage. As D approaches the critical value D¢, the linear elasticity model is no
longer valid, and rupture can be expected. In a geomaterial that experiences isotropic damage, the net
stress tensor o{} is related to the stress tensor oj; in the undamaged state by

O
o= YV

7 (1-D)

The deformability parameters applicable to an initially isotropic elastic material, which experiences

isotropic damage, can be updated by adjusting the linear elastic shear modulus by its equivalent that is
applicable to the damaged state, that is,

®)

pa = (1—-D)p €))
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with a corresponding expression for the effective stress tensor
5,:]' = ASkk(g,:/‘ + Zpl,dﬁ“,j (10)

The isotropic damage criteria governing the evolution of elastic stiffness and permeability param-
eters can be characterised by the dependency of damage variables on the distortional strain invariant.
The damage model can be applied to examine the extent to which the poroelastic behaviour of satu-
rated geomaterials can be influenced by the evolution of damage in the porous skeleton. An isotropic
damage evolution law is employed in the analysis, which is characterised by the dependency of damage
parameters on distortional strain invariants.

Following observation of experiments conducted on rocks, Cheng and Dusseault [20] propose that
damage is a function of the shear strain energy and suggest the following damage evolution equation

for rocks:
dD v2€a ( D )
Il VR S EL N B 11

at; ~Ma+en 7D, (v

where y; and y, are positive material constants, and the equivalent shear strain £; is defined as

1
Eq = (ejey)? (12)
with
1
€= 8,‘]‘ — S—Skk(s,:,‘ (13)
1

Equation (11) can be integrated between an initial damage Do and D, which gives the expression
for material damage as

v1éq4

1
D =D, —(D;— Do)(1 + y£4)72Pc e De (14)

y1 and y, are material-specific parameters describing the rate at which damage occurs within the
poroelastic skeleton. These two parameters must be estimated experimentally for different materials.

Additionally, a second criterion will be considered, based on the assumption that damage can only
grow where the material deformations are dilatational. Thus, the equation (14) will only be applied at
the locations where the first invariant of the strain tensor is positive, that is, where

tr(g;) >0 (15)

Consequently, the damage function is variable in space, and as such, a localised evolution of damage
can be expected.

Besides the reduction in the elastic shear modulus by the damage, the evolution of microcracks alters
the permeability of the porous medium. Experimental observation in sandstone rocks by Shiping ef al.
(1994) suggest that, in the damaged state, the hydraulic conductivity can have quadratic variation with
respect to equivalent shear strain £, given by

ki = (1+ &)k (16)

where f is another experimentally determined material parameter.

As can be observed, in this type of formulation, the damage and permeability are variable in space,
and the resulting governing equation for the material deformation becomes nonlinear—even though
it is based on the linear elasticity formulation—because the shear modulus is function of the dam-
age and the damage is complex function of the shear stress. Finally, the definition of problem is
completed by applying the corresponding boundary conditions for the flow velocity u; and/or the
pressure p. In the case of the elasticity equation, two types of boundary conditions are considered:
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prescribed displacement u; = U; (Dirichlet condition) and prescribed surface traction oyn; = 1;
(Neumann condition).

4. RBF-FC METHOD FOR POROELASTICITY

An RBF depends upon the separation distances of a set of functional centres and exhibits spherical
symmetry around these centres. There are several commonly used RBFs [30]; however, in this work,
we use the multiquadric RBF throughout (equation (17)), with m = 1.

U(ir)=02+c%  mezt (17)

The ¢ term, known as the shape parameter, describes the relative width of the RBF functions about
their centres. Because ¢ is a lengthscale, it is appropriate to consider a nondimensional alternative,
¢* = %, where A is typically related to the node separation distance in some way. The value of the
shape parameter can have a dramatic effect on solution quality of RBF collocation methods; however,
for the proposed RBF-FC method, the accuracy of the resulting solution is reasonably invariant of the
shape parameter for sufficiently flat basis functions (i.e. sufficiently large values of c); see [13] for
more detail.

The RBF-FC approach is a localised decomposition of the full-domain RBF collocation method for
the solution of PDEs. The RBF collocation that is performed over each of the local stencils in the RBF-
FC method is identical to the formulation for full-domain RBF collocation. Therefore, we first outline
the full-domain RBF method for linear boundary value problems before describing the decomposition
used to form the RBF-FC method itself.

The full-domain Kansa RBF collocation method, [1,2], constructs the continuous solution u(x) of
the PDE from a distinct set of N quasi-randomly distributed functional centres £;:

N NP
u(x) =Y o;W(lx =&+ Y NPy (x) xeR” (18)
Jj=1 j=1

Here, P,f;_l is the j” term of an order (m — 1) polynomial, under the constraint

N
;P (xj)=0 k=1,....NP (19)
j=1

with N P being the total number of terms in the polynomial (determined by the polynomial order and
the number of spatial dimensions). We consider a typical linear boundary value problem

Lul= f(x) onQ

Blul=g(x) onadQ (20)

where the operators L[] and B][] are linear partial differential operators on the domain Q2 and on the
boundary 92, describing the governing equation and boundary conditions, respectively. Collocating
the interpolation formula (18) at N distinct locations known as test points, x; , coinciding with the
trial centres £, leads to a system of equations

B[V]  B[Pp-1] g
L¥] L[Pp—] |a=| f 21
Pm—l 0 0

which is fully populated and nonsymmetric. In principle, the set of functional centres & need not coin-
cide with the set of test points x;; however, in the present work, the two sets are always of equal size
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and are placed at identical locations, leading to a single set of ‘collocation centres’. In this way, the
collocation matrix obtained is always a square system, and the resulting collocation system (21) may
be solved directly, without recourse to least-square methods. This collocation approach is used to solve
the pressure part of the poroelastic equation (1).

For coupled multivariate PDEs, the basic RBF collocation formula (18) must be modified
slightly. The following describes the formulation to solve the linear elasticity part of the poroelastic
equation (7).

The Lamé-Navier equations for linear elastic deformation in terms of displacement, u;, are
given by

azuj 82ui
H=3
3)6,' axj x4

(A +w) = —pb; (22)

for a body force b; and material density p. In the poroelasticity model considered here, the effective
body-force term, —pb;, is given by the gradient of the pressure-field multiplied by the Biot number,
that is, a;’TPi (equation (7)). In the case that material damage is considered, the elastic shear modulus,
1, is replaced by the equivalent shear modulus in the damaged material, /& (equation (9)).

Boundary conditions are applied either as a fixed displacement (Dirichlet condition), that is,

ui = fi (23)

or as a prescribed surface traction (Neumann condition). The surface-traction operator at a surface with
unit outward normal n; and an applied traction 7; is given by

Quy ou;  Ou;
et 22 ) — g 24
An; ok + un; (ij + o, T (24)

Because the basis functions for Kansa’s method are independent of the PDE being solved, the solution
construction for Kansa’s method is very similar to that of the single-variable formulation:

N NP
wi(x) =Y i jW(lx =&+ Y aijyn Py (x), i=123 (25)
Jj=1 Jj=1

Each variable u; is constructed using a common set of RBF functional centres §;, and the associated
RBF weighting function «;, for i = 1,2,3. The collocation system is generated by enforcing each
component of the governing equation (22) at centres internal to the domain. The displacement (23) and
surface-traction (24) operators are enforced at the appropriate centres on the domain boundary. In this
way, the set of test locations x; is equal to the set of functional centres &;. Subject to appropriate order-
ing, the resulting collocation system may be expressed as follows (excluding the polynomial terms
for brevity):

v 0 0 1
Bii[y] Bily] B[yl o T
Luly] L] Lyl —pb1
0 4 0 S
Bai[y]  Bas[y]  Basly] a | = 12} (26)
Lai[y] Lao[y] Las[y] —pby
0 0 4 f3
B3i[¢]  Baly] B[yl o3 3
| Lai[y]  Laay] Lasly] | | i | —pbs |
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The operators L;; and Bj; represent the differential operators applied to u; within the i™ equation
of the PDE governing operator L and the surface traction operator By, respectively. The functions L;
and Bj; may therefore be expressed as

92 92
Li=usi—s + (A R ,j =1,2,3 27
ij = M /ax’3+( +M)8xi3xj‘ - 7
B = an -+ T =123 (28)
= AN — nje— k7 L) =12
e R R /

An equivalent operator for the Dirichlet boundary condition would be expressed as B;; = §;;.

The collocation matrix (26) represents a square and near-fully-populated linear system. When poly-
nomial terms are included, it is of size n(N + NP) x n(N + NP), where n is the number of spatial
dimensions, N is the number of collocation points and NP is the number of terms in the polynomial.
To extend the collocation matrix to include the polynomial terms, it is necessary to include them in the
substitution of equation (25) into the governing and boundary operators (22), (23) and (24).

The RBF-FC solution procedure begins with a quasi-scattered set of nodes distributed over the
interior of the domain and over the domain boundaries. Around each internal node, a local stencil is
formed, which connects the node to its neighbours in some suitable fashion. The node around which
the stencil is formed is identified as the centrepoint for that stencil and of the resulting local RBF
collocation system.

The local RBF collocation systems take a form that aims to closely resemble their full-domain coun-
terparts; each system collocates the unknown solution value around the periphery of its local domain
(solution centres) and collocates the PDE governing operator throughout its interior (PDE centres)
(Figure 1a). In this way, the stencils act as local boundary value collocation systems, having Dirichlet
boundaries of unknown value. Additional PDE centres may be placed at auxiliary locations within
the stencil, not coincident with the global distribution of nodes. The addition of these auxiliary PDE
centres can dramatically improve solution quality [13], without increasing the number of unknowns
present in the resulting sparse global assembly.

* ¢ ¢ ¢ o 2 ¢ ¢ ¢ o
X X X X X X X X

¢ X X X o ¢ X X X o
X b4 X X X X X X

* X [X] X & o X X &
X x X X X X X X

¢ X X X o e X X X o
X b 4 x X X x X X

®* ¢ ¢ ¢ o 2 ¢ ¢ ¢ o

(a) Typical stencil; comprising (b) Typical stencil; adjacent
strictly interior nodes to domain boundary

Figure 1. Typical collocation stencil for the RBF-FC approach. Black marks represent collocation of the

unknown solution value (solution centres). Blue circles represent collocation of the PDE boundary operator

where present (boundary centres). Red crosses represent collocation of the PDE governing operator (PDE

centres). Smaller red crosses represent auxiliary PDE centres; additional locations at which the PDE govern-

ing operator is enforced locally (optional). Black box indicates the system centrepoint, the location around
which the stencil is formed and at which the global assembly is performed.
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In the case that the stencil intersects with a domain boundary, the unknown Dirichlet boundary
operator is replaced by the (known) domain boundary operator over the appropriate part of the stencil
periphery, forming boundary centres (Figure 1a). To maintain RBF system size, and therefore conver-
gence rates, stencils which intersect the boundary are translated further into the domain, rather than
being truncated.

Referring back to the original discretisation of the domain in terms of a set of quasi-scattered nodes,
it is important to note that the operator applied at any given node will typically change between col-
location systems. For example, a node placed within the interior of the domain can be expected to
exist as a solution centre in some systems (where it is present on the periphery of the associated local
stencil) and as a PDE centre in others (where it is interior to the local stencil). Nodes that are placed on
the boundary of the domain, however, do not change context; they remain boundary centres for each
system that they appear in.

By describing the stencils for the interpolation systems in this way, the meshless character of the
RBF collocation approach is largely maintained. The collocation systems are defined as a collection
of nodes, which may be irregularly distributed, and are not subject to the volumetric constraints of
element-based approaches; for example, it is not necessary to form a volumetric structure composed
of edges and faces. And there are no issues related to maintaining a good volumetric representation
of the interpolation systems. As with all local approaches, some internal book-keeping is required;
specifically, for each internal node, it is necessary to define a list of other nodes that are connected to
it, the differential operator to be applied at each connected node and the location of any auxiliary PDE
centres. For static datasets, this is purely a preprocessing issue, but in the case of a dynamic dataset,
some local stencil reconfiguration may periodically be required.

By forming an RBF collocation over each of the N stencils, which are formed around each
strictly-interior domain node, a series of N RBF local collocation systems are formed:

AP = g® =1 N (29)

Here, A®) represents the collocation matrix for system k and will be composed as described by equa-
tion (21), or equation (26), depending on whether the collocation is being performed for the pressure
equation (1) or the elasticity equation (7). Similarly, ) and d ) are the interpolation coefficients and
data vectors, respectively, for system k. The data vector d ®) contains the known boundary and PDE
operator values and also the unknown value of the solution field at the solution centres. As indicated
in Figure 1, these solution centres lie on the periphery of the local system domain and act as a local
Dirichlet boundary condition for collocation system k.

Using the appropriate RBF reconstruction formula, that is, equation (18) or equation (25), the
approximate value of the field variable u(x) (or a component thereof in the case of elasticity) may
be computed for any x within the support domain of system k. Expressing this computation as a vector
product, we have

u®(x) = H® (x)a® (30)

where H %) (x) is identified as a reconstruction vector for system k at location x.

By reconstructing the value of u at the system centrepoint, xﬁk), that is, the node around which the

stencil for system k was originally formed, we obtain:
Ne) (xgk)) — g® (xgk)) o®
_g® (x(k)) [A(k)]“ J® 31
c

—w® (xgk)) qd®

Here, W® (x.) = H® (x.) [A(k)]_1 is a stencil weights vector, expressing the value of the solution

field u, at the system centrepoint xgk), in terms of the entries in the data vector d ®). This value of u
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at x(gk), as reconstructed by equation (31), will appear as an unknown within the data vector for any
systems which have within their stencil a solution centre located at xék), that is, any systems which
have this node on their periphery. Therefore, by performing the aforementioned reconstruction (31)
at the centrepoint of each local system k, a series of N simultaneous equations are formed for the
N unknown values of u®) at the system centrepoints. Solution of this sparse global system therefore
yields the value of u at each of the N internal nodes. By feeding these values back into the local data
vectors, d %), the local systems may be used to extract any other field values as may be required for
post-process analysis (such as pressure gradients or stresses).

Note that the weights vectors may be obtained by solving the linear system
T
[4®] WO )T = B O (x)T (32)

thereby avoiding the need to explicitly compute the matrix inverse [A(k)]_1

In the sparse global system, the PDE governing operator and the corresponding boundary conditions
of the problem have already been imposed within the local collocation systems. The number of nonzero
matrix entries in each row corresponds to the number of solution centres in the associated local system,
that is, the number of nodes on the stencil periphery. In this way, the number of nonzero entries in each
row of the global assembly does not increase as the size of the dataset grows. With an appropriate
sparse linear system solver, the method may be scaled efficiently to very large datasets, so long as the
local stencil size remains constant. The numerical results presented in Section 5 demonstrate that high
convergence rates and extremely accurate solutions may be obtained in this way, using stencils of fixed
size (i.e. a predefined number of collocation centres and resulting matrix bandwidth).

The solution procedure for the proposed RBF-FC method may therefore be summarised
as follows:

1. Generate a set of nodes to adequately discretise the boundary and the interior of the
solution domain.

2. Around each interior node, form a local stencil by connecting the node to its neighbours in some
appropriate fashion. The node around which the stencil is formed is identified as the ‘centrepoint’
for this stencil.

3. Form an RBF collocation over each stencil, subject to the following guidelines:

e At nodes interior to the stencil, including the centrepoint itself, collocate the governing PDE
operator (thereby forming PDE centres).

e At nodes on the stencil periphery, collocate the Dirichlet operator with an unknown value
(thereby forming solution centres).

o If the stencil intersects the domain boundary, replace the solution centres with collocation
of the appropriate domain boundary condition (thereby forming boundary centres).

e Auxiliary PDE centres may optionally be included, at locations not coinciding with the
nodes. These auxiliary PDE centres are used to improve the accuracy of the local boundary
value problems, without increasing the number of unknowns in the global assembly.

4. For each local collocation system, form a reconstruction vector for the Dirichlet solution value
at the system centrepoint, and solve equation (32) in order to obtain a ‘weights vector’. This
weights vector describes the value of the solution at the system centrepoint in terms of its value
at the solution centres of the local system. This typically represents the most computationally
expensive stage of the procedure.

5. Assemble the weights vectors for each of the local systems, forming a sparse global system. The
number of nonzero entries in each row (i.e. matrix bandwidth) is equal to the number of solution
centres in the associated local system.

6. Solve the sparse global assembly, thereby obtaining the value of the solution field at each
interior node.

7. Place the obtained values of the solution field into the local system right-hand side vectors to
allow reconstruction of any other required data-fields (such as stresses or other partial derivatives)
throughout the domain.
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The poroelastic solution procedure first solves the Darcy pressure equation (1), obtaining the
pressure-field, p, at every node within the domain, then reconstructs the pressure gradients ;—)‘;’i at
each PDE centre (including any auxiliary PDE centres). The solution of the Darcy equation takes place

as previously described for a generalised scalar problem (equation (20)). In this instance, the governing

PDE operator is given by
ad 0
L=—\kj— 33
8)6,' ( / 3)6_/) ( )

The boundary operators will be of either Dirichlet, Neumann or Robin operator type, depending on the
requirements of the problem.

To obtain the pressure gradients, first note that any derivative of the field variable u in the RBF
approximation (18) may be obtained by applying the appropriate differential operator to the RBFs
themselves. Because the RBFs, 1, are known (equation (17)), their derivatives may be computed ana-
lytically. For a general partial differential operator Q, the equivalent RBF reconstruction formula (18)
would become

N NP
Ol = Y o, O1W(lx =&+ Y ajn Q[ Py(v)] xeR” (34)

Jj=1 J=1

Writing the aforementioned equation as a vector product, performed at the collocation stencil k,
we obtain

0[] =HE (x)a® (35)

where H (Qk) (x) is identified as a reconstruction vector for the differential operator Q, using the local
system k, at x. A solution weights vector for differential operator Q may then be obtained, that is,

Wék) (x¢) =H gc) (xc) [A(k)]_l, and the desired value of the differential operator applied to the field
variable may then be obtained, that is,

0 [u® ()| =W )a® (36)

for any x within the domain of system k. Note that the local data vector, d®), will now contain the
values of the field variable (i.e. the recently computed nodal pressure values), and so is at this stage
completely known. The value of the differential operator is therefore be obtained directly, without
recourse to forming a further sparse global assembly. For the reconstruction of pressure gradients, the
general partial differential operator, Q, is to be given by

a
of = — (37)
ax,'

The pressure gradients are then used to determine the inhomogeneous term of the elasticity equation
(7), which is solved using the RBF-FC procedure. The resulting stress fields can then be obtained via
reconstruction, as previously outlined, with the reconstruction operator Q as defined by the stress-strain
relationship (2).

In the case of a material damage analysis, the resulting stress fields are then used to determine
the damage variable D at each node (equation (11)). The damage variable, along with the material
parameters y1, ¥2 and f, can then be used to obtain the damaged shear modulus 4 (equation (9)) and
the damaged hydraulic conductivity k4 (equation (16)). These damaged variables are used within the
poroelasticity PDE that is solved in the following iteration, and the iterative procedure continues until
convergence is attained.
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5. NUMERICAL RESULTS

As described in Section 4, the proposed solution procedure for the poroelastic equation involves first
solving the Darcy equation to obtain the pressure field and pressure gradients and then solving an
inhomogeneous linear elasticity equation to obtain the resulting stress and displacement fields. The
RBF-FC method has, in [13], been validated for the solution of general convection-diffusion equa-
tions, showing the ability to solve strongly convective PDEs on centrally defined stencils (the ‘implicit
upwinding’ effect of the RBF-FC method). In the same work, the solution of the homogeneous lin-
ear elasticity equation was also investigated, and for both investigated PDEs, the method was shown
to exhibit high convergence rates—in excess of sixth order—sand a high stability to variations in the
value of the RBF shape parameter, ¢ (equation (17)). The numerical examples presented here inves-
tigate the performance of the method for the solution of the steady poroelastic equation and for the
prediction of material damage.

To verify the proposed numerical method, we formulate an analytical solution for a poroelastic
injection scenario as a cylindrical annulus under a fixed internal and external pressure. This analytical
solution is used to explore the solution accuracy and rate of convergence for Darcy flow, and for the
full poroelastic expression, by considering the injection of water into sandstone. Finally, we carry out a
simple analysis of hydromechanical damage for this injection scenario, using material damage param-
eters obtained from the literature. Here, we vary the pressure of injection to examine the accumulation
of damage within the material, we compute the critical pressure at which the material breaks down
and we investigate the benefits of injecting a given volumetric flux into a medium which has been
predamaged, in comparison with injection into an undamaged medium.

5.1. Poroelastic annulus at fixed internal and external pressure

We examine a porous cylindrical annulus subject to a large internal pressure, formulating an analytical
solution for this scenario to allow numerical verification. For a cylindrical annulus with inner radius
a and outer radius b, with pressure p; at r = a (i.e. internal pressure) and pressure pg at r = b (i.e.
external pressure), the pressure field is given by

b= 1170 —bpl In(r) + 21 In(b) — po In(a) (38)
(2) (%)
The analytical solution for the displacement and stress fields is then obtained as
ur(r) = Ar+ Bro + & (500 - %) + 623
Orr = (A + WA+ & In(r) + &] —2uBr~2 + SITM —ap 39
000 = (A + W[2A + & In(r) + &] + 2uBr 2 — &TM —ap
09 =0
where
g1 p1a® — pob® ( _ap ) ap(p1— po)
2(A + ) b2 _ a2 A+2u 2(A+2u)ln(§)
_ a*b*(p1 — po) [1 o op }
2 (b? —a?) A+2u (40)
= %po—pV)
(A +20)1n (g)
_ a(p1In(b) — poIn(a))
T a+20m (2)
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Observe that, in the case of o = 0, the poroelastic governing equation (7) is reduced to that of linear
elasticity, that is, it becomes decoupled from the pressure equation throughout the domain interior. In
this scenario, the aforementioned expression (39) is reduced to the well-known analytical solution for
a linear elastic cylindrical annulus under fixed internal and external pressure.

Taking an inner radius of ¢ = 2m and an outer radius of b = 10m, we exploit the symmetry of the
problem and examine one quarter of the domain, imposing the appropriate pressure-traction boundary
conditions at the inner and outer surface, and enforcing symmetry at the x = 0 and y = 0 bound-
aries (Figure 2a). The problem is solved using Cartesian coordinates. We take a Young’s modulus
E =27.6GPa, aPoisson ratio v = 0.15, hydraulic conductivity k = 10°m s~ ! and the Biot number
as a = 0.64, representing Weber sandstone. Choosing the inner pressure as p; = 100MPa and the
outer pressure as pp = 10MPa, the resulting stress-field is shown in Figure 2.

The solution domain is discretised with (N + 1) x (N 4 1) nodes (Figure 2a), and local stencils are
formed by connecting together neighbouring nodes in order to form a 5 x 5 stencil, with auxiliary PDE
centres placed at every Cartesian half-interval, as is represented by the sketch in Figure 1. A shape
parameter of ¢* = 100 is used, scaling against the minimum separation from the system centrepoint
to its nearest neighbouring node. We examine datasets of size N = 20, 30, 40, 60, 80, recording in
Table I the L, relative error observed for the displacement magnitude, and for each of the stress com-
ponents. Note that, owing to symmetry, the errors for the 0,, stress component are identical to those
of 011 and are therefore omitted.

The method exhibits highly accurate solutions; on the N = 80 dataset, we observe L, relative
errors of around 10~° for the stress and displacement fields, and around 10~!! for the pressure and
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Figure 2. Dataset, boundary conditions and stress-field representation.
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Table I. L5 relative errors for pressure, pressure gradient, displacement magnitude and
stresses at various dataset densities.

\5’5\ |uj | o11 012

p

=20 1.82x1077 281x1077  460x107> 2.48x107°> 4.01 x 107>
=30 4.44x107° 7.08x107°  7.19x10~7 6.12x10~7 6.49x 1077
6.03x 10710 960x10710 997x107% 7.53x1078 9.50 x 10~8
=60 647x1071  1.04x10710 834x107° 4.65x107° 6.08 x 1072
=80 137x10711  226x1071 1.65x107° 7.01x10710 890x 1010
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Figure 3. Spatial convergence: poroelastic analytical cylinder under injection pressure.

pressure gradient fields. In each case, the errors arising from the solution of the Darcy equation for
pressure are roughly two orders of magnitude smaller than those arising from the inhomogeneous linear
elasticity equation for displacement. In each case, the error observed from the gradient of the respec-
tive solution field (i.e. pressure gradient and stresses) is roughly equivalent to the error observed in the
solution field itself (i.e. pressure and displacement). This ability to obtain highly accurate represen-
tations of field derivatives represents a powerful feature of the proposed numerical method. In many
other numerical methods, such as finite volume and FEMs, the error in the field derivatives can be
expected to be substantially higher than the error observed in the field variables, often with a reduced
rate of convergence.

The errors given in Table I are plotted in Figure 3, showing clear and consistent convergence for
each data field. Although the improved accuracy of the pressure and pressure-gradient fields is clearly
visible in the plot, the rate of convergence (i.e. the gradient of the resulting curves) is very close to
that of the displacement and stress fields. In each case, a convergence rate of roughly seventh order
is observed.

5.2. Hydromechanical damage during high-pressure fluid injection

We present now a preliminary investigation into the hydromechanical damage that may occur during
a high-pressure injection of water into a sandstone. The investigation intends to highlight some of the
general features that arise during such injection and assess the impact of varying properties such as
injection pressure, material stiffness and the previously identified damage parameters. As described
in Section 3, the hydromechanical damage process is a nonlinear problem, owing to the coupling
between the hydromechanical damage, D, and the properties of the injected medium, that is, damaged
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shear modulus, g, and damaged hydraulic conductivity, k;. In each case, the nonlinear procedure
progresses as a series of Picard iterations; using the most up-to-date values of gy and kg, within the
RBF-FC solution procedure, updating their values after each iteration. The iterative process is con-
sidered to have converged when the relative change in the predicted damage field, D, changes by a
relative value of less than 107>, We note that, in most cases, this convergence is achieved after either
five or six nonlinear iterations.

We take as baseline values the material properties from the previous numerical example, that is,
E = 27.6GPa,v = 0.15,kg = 10°ms™!, and @ = 0.64. Additionally, we take baseline values for
the empirical damage parameters as y; = y, = 130, and B = 3 x 10°, as suggested for sandstone
in the work of Selvadurai [29]. The initial damage to the material, Dy, is taken to be zero, and the
critical damage parameter, D, which represents the damage at which the porous skeleton itself breaks
down, is set as D, = 0.75. Beyond this value, the continuum damage model is no longer applicable,
and macroscopic fractures can be expected to dominate. Unless otherwise stated, the aforementioned
values are used throughout this investigation.

The solution domain takes an inner radius of 2m and an outer radius of 20m, twice the outer radius
used in the previous numerical example. The domain is discretised by 31 nodes in the radial direction
and 21 nodes in the axial direction. At the x = 0 and y = 0 boundaries, we enforce symmetry, and
at the inner surface, we enforce the pressure-traction boundary condition for the injection pressure py,
that is, 7; = —pon;. At the outer boundary we enforce a pressure and surface traction that represents
the solution domain as being nested within a larger domain, of radius 50m. By evaluating the pressure
at r = 20m, as given by equation (38) taking » = 50m and p; = 0, the outer pressure boundary
condition is defined. Similarly, the surface traction is obtained by evaluating the analytical stress field
given by equation (39), under the same assumptions, at r = 20m.

Figure 4a shows the material damage predicted using the aforementioned described parameters, with
an injection pressure of Py = 200MPa (Figure 4a). The resulting increase in the hydraulic conductivity
is given in Figure 4b. The material damage is largest in the region immediately around the injection
site and decays rapidly as the separation from the injection well increases. In this case, a significant
increase in hydraulic conductivity is observed, with the value of k at the injection well being roughly a
factor of 45 larger than the undamaged hydraulic conductivity k¢. The radial variation of damage and
hydraulic conductivity for this case is shown in Figure 5. Here, the rapid decay of both damage and
hydraulic conductivity can be clearly observed.

By varying the injection pressure, py, we may examine the propagation of damage through the
domain. Figure 6a plots the volume of the domain over which the damage variable D is at least 2%, 5%
and 10%, for injection pressures in the range 50MPa < py < 300MPa. Figure 6b shows the volume
over which the hydraulic conductivity has increased by a factor of 2, a factor of 5 and a factor of 10.

15 10 15 20

(a) Material damage (D) (b) Increase in hydraulic conductivity

Figure 4. Damage field and increase in hydraulic conductivity: po = 200 m H»O.
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Figure 5. Radial variation of damage and hydraulic conductivity: po = 200 m H»O.

450 450

400 * Damage >2% 400 * k/ko >2.0
+ Damage >5% + k/k0 >5.0
~ Damage >10% 350 + k/k0 >10.0

350
300 300

250 250

Volume (m?)
Volume (m?)

200 200

150 150
100 100

50 -

//

0 50 100 150 200 250 300 0 50 100 150 200 250 300
Injection Pressure (m H,0) Injection Pressure (m H,0)

(a) Damage propagation (b) Increased hydraulic conductivity

Figure 6. Propagation of damage and increased hydraulic conductivity into the domain, for varying pressure.

From these plots is clear that the volume of damaged material increases dramatically with increased
pressure; as does the volume of increased hydraulic conductivity. This is particularly true for small

increases in damage (D > 2%) and hydraulic conductivity (]f—o > 2); at high pressures, a significant

volume of material is affected to these thresholds or above.

By further increasing po, we may estimate the injection pressure at which the critical damage,
D = D, is first observed within the material. Here, the critical injection pressure is found to be
roughly p.iy = 335 m H,0, and the critical damage occurs in the region immediately adjacent to the
injection location (Figure 7). At injection pressures above this critical value, the formation of macro-
scopic fractures can be expected to dominate (i.e. hydraulic fracturing). If the formation of macroscopic
fractures within the material is desirable, as can be expected in the case of the hydraulic fracturing of
shale to extract natural gas, then injection pressures above this critical value should be targeted. In
the case of the geological sequestration of CO,, for example, maintaining the integrity of the porous
medium is an important requirement to reduce the occurrence of leakage around the site of injection,
and therefore, injection pressures below the critical threshold should be targeted.

It is important to note that the material damage described here is an irreversible process, and there-
fore, it is possible to ‘pre-damage’ the material using a high pressure injection of water, or other
suitable fluid, before the injection of the intended storage fluid commences. In this way, the material
damage and associated increase in hydraulic conductivity can be achieved without recourse to high
pressure injection in the long term. However, given the requirement to avoid the formation of macro-
scopic fractures around the injection site that may risk the integrity of the well, the injection pressure
must be chosen carefully. The selection of a suitable injection pressure will therefore require a careful
assessment of the material strength at the injection site and also a careful assessment of the empirical
parameters that appear in the damage formulation, that is, y; and 5.
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Figure 7. Radial variation of damage and hydraulic conductivity at critical injection pressure; pg; =
335 m H>O.
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Figure 8. Pressure fields associated with a fluid injection rate of 0.5m2hr ! for injection into damaged
and undamaged substrate.

By predamaging the injection site, the resistance to the injected fluid is reduced, owing to the
increased hydraulic conductivity in this region. In this way, the injection pressure required for the
storage of a given mass flux can be reduced significantly, therefore reducing the energy expenditure
required for continuous injection. Figure 8 shows the pressure fields predicted during an injection sce-
nario, during which 0.5 m?hr~! of fluid is injected at a constant rate throughout the surface of the pipe,
that is, imposing a volumetric flux of k g—’r’ = ém hr~! in the radial direction at the inner surface (i.e.
r =a =2m).

In Figure 8a, the substrate is undamaged, having a constant hydraulic conductivity of ko =
107%m s~!. In Figure 8b, the substrate has been predamaged by injecting at a pressure of 200MPa,
resulting in a hydraulic conductivity field as represented by Figures 4b and 5b. Injection into the
predamaged substrate (Figure 8b) requires a significantly lower injection pressure; 33.98MPa, than
does injecting into the undamaged substrate (Figure 8a), which requires py = 71.15MPa for the same
injection rate of 0.5 m?hr~!. Note that this reduction in pressure required for injection into the dam-
aged substrate, while significant, is not so large as may be expected from the factor of 50 increase in k
that is observed at the surface of the pipe in this case (Figure 5b). This is due to an associated reduction
in radial pressure gradient close to the pipe surface, which is clearly visible by comparing the pressure
contours of Figures 8a and b.

Figure 9 demonstrates the effect of varying the material strength under an injection pressure of
po = 150m H,O. The plot shows the propagation of damage into the material for a Young’s
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Figure 9. Material damage propagation at varying material stiffness; po = 150 m H>O.
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Figure 10. Material damage propagation at varying Poisson ratio; pp = 150m H>O.

modulus of £ = 13.8GPa (Figure 9a), that is, half the original value of £, and E = 55.2GPa
(Figure 9b), that is, double the original value of E. As can be observed from the figure, the damage
propagates significantly further into the weaker material, and a significantly higher maximum damage
is observed.

The resulting damage field is found to be significantly less sensitive to variations in the Poisson ratio
than it is to variations in Young’s modulus. Figure 10 shows the damage field predicted for v = 0.1
(Figure 10a), and v = 0.3 (Figure 10b), with an injection pressure of po = 100m H,O. As can
be observed from comparing the two plots, only a relatively minor variation in damage propagation is
observed across this range of Poisson ratios. The larger Poisson ratio shows a slightly higher maximum
damage, which propagates slightly further into the domain.

Given the observed sensitivity of the material damage to changes in material strength, and the poten-
tial difficulty of determining the empirically derived damage parameters y; and y,, it may be preferable
in practice to progressively damage the material, rather than estimating the critical injection pressure,
Derits a priori. A relatively safe injection pressure may be selected, with the aim of producing minimal
damage to the material. The increase in material damage at the injection site may then be investi-
gated experimentally, allowing an improved estimate for an increased injection pressure. In this way,
the desired increase in hydraulic conductivity may be attained, with a reduced risk of exceeding the
critical damage threshold (D) and damaging the integrity of the injection site.
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6. CONCLUSIONS

In this work, a high-resolution scalable meshless numerical method is described for the solution of
steady poroelastic problems. Based on a local collocation with RBFs, the proposed RBF-FC approach
retains many of the desirable characteristics of full-domain RBF collocation methods, such as the abil-
ity to operate on irregular datasets and impose arbitrary boundary operators, without exhibiting the
computational cost and numerical ill-conditioning issues associated with such full-domain collocation
methods. The formulation of the method is described in detail for the solution of linear scalar problems,
linear elasticity and the steady poroelastic equation.

To verify the implementation of the RBF-FC for steady poroelastic analysis, an analytical solution
is formulated for the pressurised injection of liquid into a porous medium. Comparison of numerical
predictions with the analytical solution show that the method is capable of high accuracy and exhibits
convergence rates of roughly seventh order. The method is shown to be capable of obtaining the deriva-
tives of field variables, such as pressure gradients and hydromechanical stresses, to the same level of
accuracy as the field variables themselves (i.e. pressure and displacement).

The numerical method is applied to investigate the hydromechanical damage of a sandstone
during high-pressure fluid injection. In this nonlinear problem, the formation of microcracks and
microfissures is estimated via a continuum damage parameter, which modifies the bulk shear modulus
and hydraulic conductivity of the injected medium. The magnitude of material damage and the extent
of its propagation into the medium is investigated by adjusting the injection pressure and material
strength. It may be observed that, once the injection pressure is sufficiently large to cause apprecia-
ble damage to the porous medium, further increases in pressure will rapidly increase the amount of
damage and the radius at which it propagates into the domain. The formation of damage is strongly
dependent on the Young’s modulus of the substrate yet only weakly dependent on the Poisson ratio.
The formation of material damage in this scenario significantly increases the hydraulic conductivity of
the medium in the region around the injection site, which in turn reduces the resistance of the material
to the injected fluid.
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